APPROXIMATE SOLUTION OF THE PROBLEM
OF THE THREE-DIMENSIONAL BOUNDARY LAYER
IN AN INCOMPRESSIBLE FLUID

I. G. Brykina and Yu. D. Shevelev UDC 532.526

A method of successive approximations is proposed for the solution of the equations of the
three-dimensional incompressible boundary layer on bodies of arbitrary shape. A coordinate
system connected with the streamlines of the external nonviscous flow is used. It is assumed
that the velocity across the external streamlines is small. When the intensity of secondary
flow is low the equations describing the boundary layer in an incompressible fluid are re-
duced to a form analogous to the equations for the boundary layer on axially symmetrical
bodies. An approximate analytical solution is obtained for the velocity and for the friction in
the form of equations which can be used for any problems of a three-dimensional incom-
pressible boundary layer. The method developed was applied to the problem of the three-
dimensional boundary layer at a plate with a cylindrical obstacle in the presence of a slip
angle.

1. Let us consider the three-dimensional laminar boundary layer in an incompressible fluid at an
arbitrary surface. We will use the curvilinear orthogonal coordinate system &, 7, ¢, connected with the
streamlines of the external ideal flow at the surface. The coordinate ¢ is the distance from the surface of
the body along the normal, so that £ =0 is the equation of the surface in the flow, the lines n =const are
the streamlines of the nonviscous flow at the surface, and the lines £ =const are their orthogonal trajec-
tories, i.e., the equipotential lines.

The equations of the three-dimensional incompressible boundary layer in the coordinate system chosen
chosen have the form [1]
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Here u, w, and v are the projections of the velocity on the coordinate lines £, n, and ¢, respectively,
v is the kinematic viscosity coefficient, and g;, (£, 7) and gy, (£, n) are metric coefficients,

The boundary conditions for system (1.1) are chosen as follows:
u=w=v=0a {=0,u—-U, §n),w—>0 as {— x (1.2)
Here Ug is the total velocity of nonviscous flow at the surface of the body.

As the coordinate of £ along the streamlines we take the potential ¢ of the external ideal flow. We
denote the coordinate of 7 orthogonal to the streamlines through ¢. If £, and n, are an arbitrary orthogonal
coordinate system at the surface then for the components of the velocity of the external flow we have
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If we take ¢ and ¥ as £, and 1, we obtain
U,= 1/1/?1—;

d The element of length at the surface can be represented in the form

11 1
B [ ds? = T (d(Pz“l‘ Wd‘IJz ), gnu=1/02, g22=1/(r?U % (1.3

where r? =1/(g22Ue2) is a function which depends on the geometry of the surface,
T”ew the external flow, and the choice of the coordinate 1.

Fig. 1 We will assume that the velocity across the streamlines of the external
flow and its derivatives are small compared with the velocity along the stream-
lines. Since the transverse velocity is equal to zero at the surface of the body and at the outer boundary of
the boundary layer, the assumption that the secondary flow is of low intensity is justified to a certain extent
{2, 3]. The secondary flow is small when the external streamlines have small geodesic curvature. Up to
values of 0.3-0.4 for the ratio of the velocity of transverse flow in the boundary layer to the total local veloc-
ity one can use the principle of the independence of the longitudinal flow from the transverse flow.

In (1.1) let us make the substitution
L=VU,t, u=v/VU, rn=1/1U (1.4)

On the assumption that the secondary flow is small we arrive at equations analogous to the equations
for the boundary layer near an axially symmetrical body from which is found the longitudinal velocity and a
linear equation for the transverse velocity

Ou ou 5 08U, u 9 dor (1.5)
v gy =V gy g +rgy =0

ow ow dlnnr 1 dlnv, 2y __ o O
ugr gyt g WU =g (1.6)

with the boundary conditions
u=w=v=0at {;=0u—->U,w—->0 as {; —

2. Let us find the function r. Let z = f(x, y) be the equation in Cartesian coordinates for the surface
over which the flow occurs. Let us change from the coordinates x, y, z to the coordinates ¢, 3, ¢. For
this we construct the normal from the point (x, y, z) to the surface of the body. We designate the Cartesian
coordinates of the point of intersection as xy, v, 2y = f(x;, ¥o)-

Then ¢, @, { are connected with x, y, z by the equations

¢ = @ (o, Yo, f (0, yo))7 Y =Y (2o, Yo, f (%0, yo))
L=z — f@oyo) |V T4 (3 / 0ot + (0 / yo)?

where x; and y, are found from the equations
zo =z + (z — [ (20, Y0)) 0f/0z0ryo = y + (2 — [ (z0, y0)) 9f/dyo

It is necessary to find gy, at z= f(x, y)
o= (5] (S5) + (R = = (B + (B + (3T

Since the velocity vector of the external ideal flow Ug [uy, Uy, uy] lies in a plane tangent to the sur-
face in the flow,
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Since the lines ¥ =const, z= f (%, y) are streamlines at the surface of the body it is easy to find that
oy ux o 2.1

6yg Uy o

With this in mind one can find
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Thus, we obtain

(2.2)

If U, (%, y, z) is known one can find 8 Ug /8§ and 8Ug/0n (§=¢, n =9) from the equations
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e

ou
=ul dx ""_ v aye+

O/ 90 Ve ot \al af  \oU, af af \ au,
—U =—(“v+"a;“z) 3 +(“x+wuz)‘a;+(“xa—y—“u%) 5 (23

3. Let us introduce new variables by analogy with [1]

1 UG ]%
”“[v{a—ao(ml b

U= Ue (§7 Tl) E (Ea M, 7")7 w = Ue (gv T]) G(Ey M, )") (3. 1)

= e R — =B I EE N — 6 D IE— B mIGE b 2]

where £, (1) = ¢, (¥) is the equation of the boundary of the body from which the boundary layer begins to
develop. For example, in the case of flow over a flat plate with an obstacle mounted in front of it £, (1) is
the equation of the leading edge of the plate. If one is considering the flow over a blunt body where there is
a critical point,then the function £, (7) =0. The potential ¢ is reckoned from this leading critical point,
ie.,atit o= £=0.

Equations (1.5) and (1.6) for u, v;, and w are transformed into equations for E, K, and G

F o OE 9K 9E
W=KW+N1(E2_1)+N4ET, 77“—=—*PxE—-Nr35— (3.2)
e = K2 My (B — 1) + MEG+ N,EZS z
with the boundary conditions
E=G=K=0 at A =0,F—-1,G6—-0 as A— o (3.3)

The coefficients Py, M,, M;, N;, and N, are known functions of £ and  and are determined by the
geometry of the surface and the external flow

Ny=0InU,/0Ink;, Ny=E§, M;=ErélnU,/on

e (3.4)

Mz=—0dlnr/olng,, P1=aln'—r[]_1'/aln§h Bi=8—E&Mm
e

The components of the friction at the surface of the body in the flow are found from the equations
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Here p is the dynamic viscosity coefficient and p is the density.

(3.5)

4. Let us obtain integral equations for the functions E and G by integrating the corresponding dif-
ferential equations twice with respect to A (from A to« and then from 0 to A)

6911

—E P1901*+(P1+N1)911 +N161*+N4 +N4603

@.1)
— G = Pyfus* + MyByy* + (Py -+ My) 0% + My0,* -+ N4 T N o
For the dimensionless friction at the wall we have the following equations
— 2 ] = Prt N Oy + Moy + N B w2
— S|\, = Mibu -+ (Py -+ My) s + Mlel + N, O
bu=\ (E—1)Edr, 0, = EGar, el=S (E — 1) dh (4.3
A

(E — 1) d\ di

PG e g

A
E¢ardr, o*=\{(
0

e g

A oo A
o=\ E—EDD, 0, =
oA 0

i[(E-—i)SEdk] dh, 602*=§{G§de]dx
5[(E—173?E—§de] , 904*=§[G-3%§de]dx

] 0

e01

We will solve the integral equations (4.1) by the method of successive approximations [4]. For this it
is necessary that after the substitution into the right sides of these equations of the arbitrary integrable
functions E (£, 7, A) and G ({, 17, A) which satisfy the boundary conditions

E@En0=0G(En10)=0,E( 1 0)=1,6(E 1 «)=0

the right sides must take on values equal to unity and zero, respectively, as A —o«. For this we introduce
the unknown "correcting® functions & (£, ) and b (£, 7)

E®™ = g™ (g M, A /]/6(%1)) G™ = p D) & M V(g(—MT)) 4.4)

and the new independent variable

;"0 AV 8™ (4.5)

After the substitution into the right sides of (4.1) of the function E(® &, g(n)] in place of E and the
function b® *1) g0} [£&,m ¢ (™1 in place of G and the change from integration over A to integration over
¢ (0 we obtain the connection between the (n+1)-th approximation and the n-th approximation

— R _ s(nd1) ) my ™D
E ) A + a _—di (4.6)

— @MY = g (g 4 gty ey BT mgmen) 45T

5(41) pnAD)
g T —E

Here A (£, n, ¢ M, B(D (£, 1, ¢@, e (g, 0, ¢, a;™ (£, 1, @] (i=1, 2, 3) are known func-
tions of E(M and G(n

We choose the functions (0 *+1) (¢, 1) and b2 +1) (£ 1) in such a way that the boundary conditions are
satisfied at the outer boundary of the boundary layer for E@+Dang O+ Ag t—e we have E@+Y _ 1
and G((n"‘l)) — 0. Hence we obtain linear first-order differential equations for the determination of s(n+1)
and b{0+1
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' 7 5 7 ] Z These equations can be integrated. First the first equa-
Fig. 2 tion is solved, the 5(R*1 obtained is substituted into the second

equation, and then b(®+1) is determined.

The (n+1)-th approximation for the dimensionless friction at the wall is found from the equations

8E |1

T

Vﬁ(’ﬂ+1) [N (e(n) + e(n)) 4 Ple(n) + N4 fils) 1’{ .’ + ]\/49(") d_l%
=0
4.8)
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'ﬂ

E

G |0 W n) | g n
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Given the zeroth approximation by some means one can determine all the subsequent approximations
for the components of the velocity and friction at the surface using (4.6)-(4.8).

5. Let us examine the first approximation. We give the zeroth approximation in the form
E®=1—Z,"), " =t" 2" —Z1C")

) 4 (5.1)
2@ =~z \e®ds 2@ =

The subsequent approximations E(n) and G will be connected with a class of functions Zm [5]
4
Am - m __rz
Zn @ =2 \C—0revds, m=0,1,2,... (5.2)

Here the A, are chosen so that Zn, (0) =

The functions 6 (¢, 7) and b (£, n) in the first approximation are found from the equations

(1) (5.3)
N, ddi — W [2p1+(%+2) Nl] +8
) @ 24 5 4 1 2+m g
N o[y, 31— _ L 5.4
= M3V PN 302 0 ] o 6

After substituting the values of the coefficients Eq. (5.3) takes the form

s o aut’"
45 dml(ln : ):8

ding 7

The initial condition for this equation is found from the requirement that d5(1)/d§1 be finite when £, =
0. For this it is necessary that

6(1) |3.1=0 =38

Solving the equation for 5(1) with this initial condition we obtain

E k1 - T
- M= = By (5.5)

3
a __ 8 _11
=g\t £ 2
Disclosing the values of the coefficients and using the expression found for 5(1), we have an equation
for the function bt (&, m

By

v g d 0616 [0 M | ~0.7992 din U
e =t e [0 (oszl—dgl) | — 21048, 2l
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From the assumption that db(t) /d¢, is finite at £, =0 we obtain the initial condition for b{!); b{!)] £,=0=0.

The solution of the equation with this initial condition has the form

29

LHe N, N=(\
[

Y — 24(1)3& S dln U ol (5.6)

)0.7992

0

Knowing 6(1) and b() one can find the first approximation for the velocity components and for the fric-
tion at the wall. With allowance for (4.6) and (5.3), (5.4) we obtain for E() and G() the expressions

aln U, 4 Ly
EW _ g® (9117112,1 !-I(T+ 2)—]00—7(42—1)]——&11

5.
¢ — [3(]/2 1)‘/—;:—_—_—2—6!3—8(1,2] —|—-6(1) 1t 3lgnUe [%‘i_z a5 — Jo.0 — ——12——(Z2 _ 1)] 4 (5.7)
Wy 8In U, 11 4 24 x

a= =g [Jeo— g U2+ +(U—Z)— (1 — Z)]
to= g =g [ — 2 — Lo+ ha—Jos —5(—Za)+U—2Z)— (1 +1)U—2)] (5.9
a3-—a3)/N4 Yol —2 2)—‘1/2(1'—Z1)—J00+100

Joo——(l—Z12)+ (1_702)__(1__51 V‘zg(l)))
It;.o Z%_TZU(ZI+Z—1)— V_ -2z, (Vz ;(1)))
L= Zo(Za— 2) + —r= (U= Zo(V 21%)

Let us find the values of the dimensionless friction at the surface of the body in the first approxima-
tion. Using (4.8), (5.3), and (5.4) we have

8E | @ omU, [ 1 2(V2—1) 1 4V 2I-1)
Tl =V S (va T AV )+ Vo V=
G dln U, 1/~ 2 24w Va V21
WLF tr e V'8 [l/ . V'z'n"( Z V= )]+
Ya VZ-1 8ln U, 3(V2—1) 1 4 3(V2= )=
(B - L) Vet e (S - L) y'aT)(1_ )] (5.9)

6. Let us use the proposed method to examine the problem of the boundary layer formed at a thin

semiinfinite plate perpendicular to which is placed an infinite cylinder, with an incompressible fluid flowing
over the plate,

We will consider flow over the plate at a slip angle 9, where ¢ is the angle between the normal to the
velocity of the impinging stream at infinity and the leading edge of the plate (Fig. 1).

In the case of a circular cylinder the relative potential of the external ideal flow is taken as the co-
ordinate ¢ [6]
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By eliminating z from here one can find ¢, () = &, (7).

The longitudinal and transverse velocity components and the friction at the plate are found from Eqgs.
(5.5)-(5.9), in which one must set r equal to unity.

Let us examine the problem at the line of spreading flow z=0. Here
oG 1 241
n=0, F=0 E=z(l+5)+F (6.5)
Ey=0, U,=1—1/2?

For the dimensionless friction we obtain
3

g
oF _ al, 8 C rra/m 8 s/w ~ty
= (0.4146 T § Ut g + 0.9368) (av‘* =\ut d§) (6.6)
€ 0

The pressure in the boundary layer along the line of spreading flow will increase as the cylinder
is approached. Therefore the flow in the boundary layer is retarded and "separation® of the boundary layer
develops, Let us find the point of separation on the line of spreading flow, i.e., the point at which the fric-

tion is reduced to zero. Since

& au,  oU, 1

=7 =% T

the equation for the coordinate x of the point of separation takes the form

8/ 4l % 4/m+1
z S (1 _:_2} iz + 04412 = 0 (6.7)
d

(z2 — 1)4/ 42

The location of the point of separation on the line of spreading flow depends only on d and does not de-

pend on the slip angle 4.

The dependence of the location of the point of separation on the line of spreading flow on the distance
of the cylinder axis from the leading edge of the plate (d), expressed through Eq. (6.7), is presented in Fig.
2. Here the experimental data of [7] and the data of the exact numerical calculations of [1] are given (the
dash-dot curve is the present calculation, 2 is the experimental data, and 1 is the result of the finite-dif-
ference calculations). It is seen that both the experimental points and the exact solution fall nicely on the
calculated curve. The dependence of the point of separation on the line of spreading flow on d in the first
approximation for the locally self-similar solution is shown in the same figure. The locally self-similar
solution is the approximate solution of the boundary layer equations when we neglect the derivatives of the
unknown functions with respect to £ and to  compared with the derivatives with respect to ¢, and the co-
ordinates £ and 7 enter into the equations only as parameters (the dashed curve in Fig. 2 gives the results

of the locally self-similar approximation).
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The friction at the surface obtained from Eqgs. (5.9) was compared with the results of exact numerical
calculations and with the locally self-similar solution. The comparison was made for a slip angle to
zero and d=4. It is seen in Fig. 3 that the first approximation agrees well with the exact solution.

A comparison of the dimensionless values of the friction components 74 (curves 1) and 7, (curves 2)
obtained in the given approximation with the results of the finite-difference calculations and of the locally
self-similar approximation are presented in Fig. 3 for x=—3 as a function of z.

The dimensionless friction component 74 on the line of spreading flow z =0 as a function of d—x is
presented in Fig. 3 (curve 3) (the dash-dot curve is the present calculation, the solid curve is the results
of the finite~difference calculations, and the dashed curve is the locally self-similar approximation).

The behavior of the *limiting® streamlines at the body (d=3, ¢ =0) is shown in Fig. 4. The flow
pattern in the boundary layer is completely different from the pattern of the external ideal flow. The "line
of separation® is seen, which in this case is an envelope of the limiting streamlines.

The behavior of the limiting streamlines at the body in the presence of a slip angle (d=3, 6 =45°) is
shown in Fig. 5. The point of separation on the line of spreading flow does not depend on the slip angle, but
the pattern of behavior of the streamlines is unsymmetrical in the two half-planes (z > 0, z < 0). The vortex
which has formed can be noted beyond the line of separation. The proposed method makes it possible to
find in the first approximation the pattern of behavior of the limiting streamlines everywhere on the body,
beyond the line of separation in particular. The results obtained beyond the line of separation must be
treated with some caution, since the boundary layer theory is approximate and the assumption that the
secondary flow near the line of separation is small is not satisfied. Therefore these results are presented
only partially, although they are of interest, since in our view they make it possible to explain the nature of
the flow and to give a mathematically strict substantiation of the formulation of the problem in the entire
region.
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